Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Adv ; 8(38): eabo6783, 2022 09 23.
Article in English | MEDLINE | ID: covidwho-2038224

ABSTRACT

In the initial process of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects respiratory epithelial cells and then transfers to other organs the blood vessels. It is believed that SARS-CoV-2 can pass the vascular wall by altering the endothelial barrier using an unknown mechanism. In this study, we investigated the effect of SARS-CoV-2 on the endothelial barrier using an airway-on-a-chip that mimics respiratory organs and found that SARS-CoV-2 produced from infected epithelial cells disrupts the barrier by decreasing Claudin-5 (CLDN5), a tight junction protein, and disrupting vascular endothelial cadherin-mediated adherens junctions. Consistently, the gene and protein expression levels of CLDN5 in the lungs of a patient with COVID-19 were decreased. CLDN5 overexpression or Fluvastatin treatment rescued the SARS-CoV-2-induced respiratory endothelial barrier disruption. We concluded that the down-regulation of CLDN5 expression is a pivotal mechanism for SARS-CoV-2-induced endothelial barrier disruption in respiratory organs and that inducing CLDN5 expression is a therapeutic strategy against COVID-19.


Subject(s)
COVID-19 , Claudin-5/metabolism , SARS-CoV-2 , Claudin-5/genetics , Endothelial Cells/metabolism , Fluvastatin/metabolism , Fluvastatin/pharmacology , Humans , Tight Junction Proteins/metabolism
2.
Toxicology ; 477: 153254, 2022 07.
Article in English | MEDLINE | ID: covidwho-1915038

ABSTRACT

MA-T (Matching Transformation System®) is a proprietary chemical mixture for on-demand production of aqueous chlorine dioxide that is used for the treatment of oral malodor. MA-T is also an effective disinfectant against at least 39 pathological microorganisms, including severe acute respiratory syndrome coronavirus 2, and therefore may be useful as a disinfectant mouthwash to prevent the spread of infection. Accidental ingestion is the putative worst hazard scenario associated with mouthwash use; therefore, here we investigated the safety of MA-T ingestion in mice. Mice were provided drinking water containing 0-3000 µg/ml MA-T for 7 days followed by non-spiked drinking water for an additional 14 days. At day 7, mice ingesting 1000 or 3000 µg/ml MA-T showed significantly decreased body weight and significantly increased liver, kidney, and heart tissue injury biomarkers compared with control. However, at 14 days after stopping MA-T ingestion, body weight and tissue injury biomarkers had returned to normal. Histological analysis revealed that MA-T-induced injuries in liver, kidney, spleen, stomach, duodenum, colon, and rectum had also recovered at 14 days after stopping MA-T ingestion; however, mild vascular endothelial injuries remained in heart, jejunum, and ileum in the worst-case scenario. Taken together, MA-T may be potentially safety for further development as a disinfectant mouthwash by risk management, such as placing a caution of the label and adding a distinctive flavor.


Subject(s)
COVID-19 , Disinfectants , Drinking Water , Animals , Body Weight , Disinfectants/toxicity , Eating , Mice , Mouthwashes/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL